Review Problems for the Real Analysis Qual Exam

1.	Give a definition	of the Borel	σ -algebra	of \mathscr{B}	of \mathbb{R}^n .	Let 9	be the	smallest	σ -algebra	containing	all th	e
	open cubes in \mathbb{R}^n .	Show that &	$\mathscr{I}=\mathscr{B}.$									

2. Let f be a function on \mathbb{R}^n . Show that f is measurable if and only if for every open set G in \mathbb{R}^1 , the inverse image $f^{-1}(G)$ is a measurable subset of \mathbb{R}^n .

3. Suppose $E \subset \mathbb{R}^n$ with finite outer measure. Show that E is measurable if and only if given $\epsilon > 0$, $E = \left(S \cup N_1\right) \sim N_2$, where S is a finite union of non-overlapping intervals and the outer measure of N_1 and N_2 are less than ϵ . (Thrm 3.29, Wheeden pg 43)

4.	Define convergence in measure. Let $\{f_k\}$ be a sequence of measurable functions on a measurable set
	$E \subset \mathbb{R}^n$. Suppose for any $\epsilon > 0$, there exist K such that $ \{ f_k - f > \epsilon\} < \epsilon$ if $k > K$, show that $f_k \to f$ in measure.

5.	Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set $E \subset \mathbb{R}^n$ with $ E < \infty$. Suppose for each $x \in E$, there is a $\delta_x > 0$ such that $ E < \varepsilon$ and $f_k(x) > \delta$ for all k and all $x \in F$. (#15, Wheeden pg 62)

6. State Fatou's Lemma for measurable functions. Use Fatou's Lemma to prove Lebesgue's Dominated Convergence Theorem:

Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set $E \subset \mathbb{R}^n$ such that $f_k \to f$ a.e. in E, and there exists $\varphi \in L(E)$ such that $|f_k| \leq \varphi$ a.e. in E for all k. Then $\int_E f_k \to \int_E f$.

7. Let $\{f_k\}$ be a sequence of nonnegative measurable functions defined on a measurable set E. If $f_k \to f$ and $f_k \le f$ a.e. on E, show that $\int_E f_k \to \int_E f_k$.

8. Let $f \in L(0,1)$. Prove the following:

$$\lim_{k \to \infty} k \int_0^1 \ln \left(1 + \frac{|f(x)|^2}{k^2} \right) = 0.$$

9. Let $f_k, f \in L(E)$ with |E| finite. Suppose $0 \le f_k$ and $f_k \to f$ a.e. in E. Prove

$$\lim_{k\to\infty}\int_E f_k e^{-f_k} = \int_E f e^{-f}.$$

a.e. in $[a,b]$.		

10. Let f be a bounded function in [a,b]. Show that if f is Riemann integrable on [a,b], then f is continuous

11.	. Let $f(x,y)$ be nonnegative and measurable in \mathbb{R}^2 . S almost every y . Show that for almost every $y \in \mathbb{R}$, $f(x,y)$	suppose that for almost every $x \in \mathbb{R}$, $f(x, y)$ is finite for (x, y) is finite for almost every x .

12. Use Fubini's theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \pi^{\frac{n}{2}}$$

13.	Let f be an essentially bounded function defined on a measurable set E with $ E < \infty$. Show that $f \in L^p(E)$ for all $p > 0$ and $\ f\ _{\infty} = \lim_{p \to \infty} \ f\ _p$. Also demonstrate by examples that this result fail if $ E = \infty$.

14. Let f be measurable on [0,1]. For $1 \leq p < \infty$ define

$$g(p) = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}.$$

Show that g is non-decreasing on $[1,\infty)$. Assume in addition that $f\notin L^\infty(0,1)$. Show that

$$\lim_{p\to\infty}g(p)=\infty.$$

15. Let $f, \{f_k\} \in L^p(E)$, where $E \subset \mathbb{R}^n$ is a measurable set. Show that if $\|f - f_k\|_p \to 0$, then $\|f_k\|_p \to \|f\|_p$. Conversely, if $f_k \to f$ a.e. and $\|f_k\|_p \to \|f\|_p$, show that $\|f - f_k\|_p \to 0$.

RA Practice Qual Exam #1

1. Give a definition of the Borel σ -algebra of \mathscr{B} of \mathbb{R}^n . Let \mathscr{I} be the smallest σ -algebra containing all the

finite intervals of the type (a,b]. Show that $\mathcal{I} = \mathcal{B}$.

2.	Define convergence in measure. Let $\{f_k\}$ be a sequence of measurable functions on a measurable set $E \subset \mathbb{R}^n$. Suppose for any $\epsilon > 0$, there exist K such that $ \{ f_k - f > \epsilon\} < \epsilon$ if $k > K$, show that $f_k \to f$ in measure.

3.	Let $\{f_k\}$ be a sequence of nonnegative measurable functions defined on a measurable set E .	If $f_k \to f$
	and $f_k \leq f$ a.e. on E , show that $\int_E f_k \to \int_E f_k$.	

4. Let f be a bounded function in $[a,b]$. ous a.e. in $[a,b]$.	Show that if f is Riemann integrable on $[a,b]$, then f is continu-

5. Let f be an essentially bounded function defined on a measurable set E with $ E < \infty$. Show th $f \in L^p(E)$ for all $p > 0$ and $ f _{\infty} = \lim_{p \to \infty} f _p$. Also demonstrate by examples that this result fail $ E = \infty$.	

6.	Give an example of a sequence of functions $\{f_k\}$ on $[0,1]$ so that f_k converges in measure but f_k diver pointwisely at every point of $[0,1]$.		

RA Practice Qual Exam #2

1. Use Fubini's theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \pi^{\frac{n}{2}}$$

2.	Let $f(x, y)$ be nonnegative and measurable in \mathbb{R}^2 . Suppose that for almost every $x \in \mathbb{R}$, $f(x, y)$ is finite for almost every $y \in \mathbb{R}$, $f(x, y)$ is finite for almost every x .

- 3. State Fatou's Lemma for measurable functions. Use Fatou's Lemma to prove Lebesgue's Dominated Convergence Theorem:
 - Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set $E \subset \mathbb{R}^n$ such that $f_k \to f$ a.e. in E, and there exists $\varphi \in L(E)$ such that $|f_k| \le \varphi$ a.e. in E for all k. Then $\int_E f_k \to \int_E f$.

4.	Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set $E \subset \mathbb{R}^n$ with $ E $ Suppose for each $x \in E$, there is a $\delta_x > 0$ such that $ E \sim F < \epsilon$ and $f_k(x) > \delta$ for all k and all $x \in E$. Wheeden pg 62)	

5. Let $f_k, f \in L(E)$ with |E| finite. Suppose $0 \le f_k$ and $f_k \to f$ a.e. in E. Prove

$$\lim_{k\to\infty}\int_E f_k e^{-f_k} = \int_E f e^{-f}.$$

6. Give a definition of the Borel σ -algebra of \mathscr{B} of \mathbb{R}^n . Let \mathscr{I} be the smallest σ -algebra containing all the

finite intervals of the type (a,b). Show that $\mathcal{I} = \mathcal{B}$.

RA Practice Qual Exam #3

ous a.e. in $[a,b]$.		

Page 31

1. Let f be a bounded function in [a,b]. Show that if f is Riemann integrable on [a,b], then f is continu-

2.	Let $f(x, y)$ be nonnegative and measurable in \mathbb{R}^2 . Suppose that for almost every $x \in \mathbb{R}$, $f(x, y)$ is finite for almost every $y \in \mathbb{R}$, $f(x, y)$ is finite for almost every x .

3. Let $f \in L(0,1)$. Prove the following:

$$\lim_{k \to \infty} k \int_0^1 \ln \left(1 + \frac{|f(x)|^2}{k^2} \right) = 0.$$

4. Give a definition of the Borel σ -algebra of \mathscr{B} of \mathbb{R}^n . Let \mathscr{I} be the smallest σ -algebra containing all the

finite intervals of the type [a,b). Show that $\mathcal{I} = \mathcal{B}$.

5.	Let $\{f_k\}$ be a Suppose for ea Wheeden pg 6	$ach x \in E, ther$,		

RA Practice Qual Exam #4

1. Let f, $\{f_k\} \in L^p(E)$, where $E \subset \mathbb{R}^n$ is a measurable set. Show that if $\|f - f_k\|_p \to 0$, then $\|f_k\|_p \to \|f\|_p$. Conversely, if $f_k \to f$ a.e. and $\|f_k\|_p \to \|f\|_p$, show that $\|f - f_k\|_p \to 0$.

2.	Define convergence in measure. Let $\{f_k\}$ be a sequence of measurable functions on a measurable set $E \subset \mathbb{R}^n$. Suppose for any $\epsilon > 0$, there exist K such that $ \{ f_k - f > \epsilon\} < \epsilon$ if $k > K$, show that $f_k \to f$ in measure.

3. Suppose $E \subset \mathbb{R}^n$ with finite outer measure. Show that E is measurable if and only if given $\epsilon > 0$, $E = \left(S \cup N_1\right) \sim N_2$, where S is a finite union of non-overlapping intervals and the outer measure of N_1 and N_2 are less than ϵ . (Thrm 3.29, Wheeden pg 43)

4. Let $f_k, f \in L(E)$ with |E| finite. Suppose $0 \le f_k$ and $f_k \to f$ a.e. in E. Prove

$$\lim_{k\to\infty}\int_E f_k e^{-f_k} = \int_E f e^{-f}.$$

5. Give a definition of the Borel σ -algebra of \mathscr{B} of \mathbb{R}^n . Let \mathscr{I} be the smallest σ -algebra containing all the

finite intervals of the type [a,b]. Show that $\mathcal{I} = \mathcal{B}$.

6. Let $\{\varphi_k\}$ be an orthonormal basis in $L^2(I)$, where I=(0,1), and $f\in L^2(I)$. Show that

$$\lim_{k \to \infty} \int_0^1 f(x) \varphi_k = 0$$