Review Problems for the NLA Qual Exam

1. Let the eigenvalues of an $n \times n$ real symmetric matric A be ordered from the largest to the smallest. Prove that for any $1 \le k \le n$,

$$\lambda_k = \max_{S^k} \min_{0 \neq x \in S^k} r(x, A),$$

where S^k is any k dimensional subspace of \mathbb{R}^n , and r(x,A) is the Rayleigh quotient $\frac{x^TAx}{x^Tx}$.

- (a) Prove that the growth factor $\rho = \frac{\|U\|_{max}}{\|A\|_{max}}$ is unbounded for LU factorization without pivoting.
- (b) Prove that the growth factor is bounded by 2^{m-1} for LU factorization of $A \in \mathbb{R}^{m \times m}$ with row pivoting.

3.	. A is a diagonalizable matrix with one eigenvalue being -1 , and others residing in	the uni
	disk centered at 2 in the complex plane. Prove that the solution to $Ax = b$ through	GMRES
	algorithm has error	

$$\|e_n\| \leq K2^{-n}$$

for some constant K.

- 4.
- (a) State and prove the Bauer-Fike Theorem.
- (b) Show that the eigenvalue problem for Hermitian matrices is well conditioned.
- (c) Give an example that this is not true for the non-Hermitian matricies.

5. **Let**

Determine the least square solution to the over-determined linear system Ax = b.

cubic.		

Page 6

6. Prove that the convergence of Rayleigh quotient iteration for a hermitian matrix is ultimately

7. Suppose A is a real symmetric matrix with eigenvalues more or less uniformly distributed over $[2,18]$ together with an outlier at $\lambda=50$. How many steps of the conjugate gradient iteration must be taken to be sure of reducing the initial error $\ e_0\ _A$ by a factor of 20^{20} ?							

8.	Derive the asymptotic operation count of Gaussian elimination applied on an $m \times m$ real matrix A .

Page 8

9.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{pmatrix}, \qquad \epsilon = 10^{-9}$$

- (a) Find A^*A and the 2-norm $\kappa(A)$.
- (b) **MATLAB returns** rank(A) = 3, but $rank(A^*A) = 1$. Explain.

10.	Derive t	he asymptotic	operation	count	for the	following	algorithms	applied	on a	full-r	ank
	$m \times n (n \leq$	(m) matrix A .									

- (a) Reduced QR factorization by modified Gram-Schmidt orthogonalization.
- $(b) \ \ \textbf{Reduced QR factorization by Householder triangularization} (without forming \ \textbf{Q}).$

NLA Practice Qual Exam #1

1.	Derive th	e asymptotic	operation	count f	or the	following	algorithms	applied	on a	full-ranl	K
	$m \times n (n \leq r)$	n) matrix A .									

- (a) Reduced QR factorization by modified Gram-Schmidt orthogonalization.
- $(b) \ \ \textbf{Reduced QR factorization by Householder triangularization} (without forming \ \textbf{Q}).$

2.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{pmatrix}, \qquad \epsilon = 10^{-9}$$

- (a) Find A^*A and the 2-norm $\kappa(A)$.
- (b) **MATLAB returns** rank(A) = 3, but $rank(A^*A) = 1$. Explain.

3. **Let**

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.8 & 0.6 \\ 0 & -0.6 & 0.8 \end{pmatrix}, \qquad A = P \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

Determine the least square solution to the over-determined linear system Ax = b.

4.	. A is a diagonalizable matrix with one eigenvalue being -1 , and others residing in	the uni
	disk centered at 2 in the complex plane. Prove that the solution to $Ax = b$ through	GMRES
	algorithm has error	

$$\|e_n\| \leq K2^{-n}$$

for some constant K.

- (a) Prove that the growth factor $\rho = \frac{\|U\|_{max}}{\|A\|_{max}}$ is unbounded for LU factorization without pivoting.
- (b) Prove that the growth factor is bounded by 2^{m-1} for LU factorization of $A \in \mathbb{R}^{m \times m}$ with row pivoting.

NLA Practice Qual Exam #2

1. Let the eigenvalues of an $n \times n$ real symmetric matric A be ordered from the largest to the smallest. Prove that for any $1 \le k \le n$,

$$\lambda_k = \max_{S^k} \min_{0 \neq x \in S^k} r(x, A),$$

where S^k is any k dimensional subspace of \mathbb{R}^n , and r(x,A) is the Rayleigh quotient $\frac{x^TAx}{x^Tx}$.

2	2. A is a diagonalizable matrix with one eigenvalue being -1 , and others residing in the unit
	disk centered at 2 in the complex plane. Prove that the solution to $Ax = b$ through GMRES
	algorithm has error

$$\|e_n\| \leq K2^{-n}$$

for some constant K.

3. Prove that every eigenvalue of an $n \times n$ matrix A lies in one of the n circular disks in the complex plane with centers A_{jj} and radii $\sum_{i \neq j} |A_{ij}|$.

4.

$$A = \begin{pmatrix} 3 & 3 & 3 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{pmatrix}, \qquad \epsilon = 10^{-9}$$

- (a) Find A^*A and the 2-norm $\kappa(A)$.
- (b) **MATLAB returns** rank(A) = 3, but $rank(A^*A) = 1$. Explain.

- 5.
- (a) State and prove the Bauer-Fike Theorem.
- (b) Show that the eigenvalue problem for Hermitian matrices is well conditioned.
- (c) Give an example that this is not true for the non-Hermitian matricies.

NLA Practice Qual Exam #3

1. **Let**

Determine the least square solution to the over-determined linear system Ax = b.

2. Suppose A is a real symmetric matrix with eigenvalues more or less uniformly distributed over $[2,18]$ together with an outlier at $\lambda=65$. How many steps of the conjugate gradient iteration must be taken to be sure of reducing the initial error $\ e_0\ _A$ by a factor of 20^{20} ?							

3. Write a MATLAB function [Q,R] = msgs(A) that computes the reduced QR factorization of an

 $m \times n$ matrix A using the modified Gram Schmidt process (R is $n \times n$).

cubic.		

4. Prove that the convergence of Rayleigh quotient iteration for a hermitian matrix is ultimately

- (a) Prove that the growth factor $\rho = \frac{\|U\|_{max}}{\|A\|_{max}}$ is unbounded for LU factorization without pivoting.
- (b) Prove that the growth factor is bounded by 2^{m-1} for LU factorization of $A \in \mathbb{R}^{m \times m}$ with row pivoting.

NLA Practice Qual Exam #4

1. Let the eigenvalues of an $n \times n$ real symmetric matric A be ordered from the largest to the smallest. Prove that for any $1 \le k \le n$,

$$\lambda_k = \max_{S^k} \min_{0 \neq x \in S^k} r(x, A),$$

where S^k is any k dimensional subspace of \mathbb{R}^n , and r(x,A) is the Rayleigh quotient $\frac{x^TAx}{x^Tx}$.

2	2. A is a diagonalizable matrix with one eigenvalue being -1 , and others residing in the unit
	disk centered at 2 in the complex plane. Prove that the solution to $Ax = b$ through GMRES
	algorithm has error

$$\|e_n\| \leq K2^{-n}$$

for some constant K.

3.	Derive the asymptotic operation count for the following algorithms applied on a full-rank
	$m \times n (n \le m)$ matrix A.

- (a) Reduced QR factorization by modified Gram-Schmidt orthogonalization.
- $(b) \ \ \textbf{Reduced QR factorization by Householder triangularization} (without forming \ \textbf{Q}).$

- 4.
- (a) State and prove the Bauer-Fike Theorem.
- (b) Show that the eigenvalue problem for Hermitian matrices is well conditioned.
- (c) Give an example that this is not true for the non-Hermitian matricies.

5. Construct the first Householder reflection matrix H_1 in the Householder triangularization of A.

$$A = \begin{pmatrix} -1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$